

Market Acceptance of JPEG 2000 Medical, Digital Cinema, GIS

Bernie Brower

Chairman INCITS/L3.2 "Still Image Coding"

ITT Geospatial Systems

bernard.brower@itt.com

+1 585 269-5079

InterNational Committee for Information Technology Standards

Where IT all begins

Presentation Overview

- Presentation was developed under INCITS/L3.2
 - Shared with the JPEG committee for use by all JPEG members
 - Medical, Alexis Tzannes, Ph. D, Aware Inc. Alexis@aware.com
 - Digital Cinema, Mr. Walt Husak, Dolby Labs, <u>WJH@dolby.com</u>
 - GIS/Remote Sensing, Bernie Brower, ITT Geospatial Systems
 - Cultural Heritage, Robert Buckley, U of R/NewMarket Imaging
- Focus on three markets that JPEG 2000 has gained market acceptance
 - Medical Imaging
 - Digital Cinema
 - GIS/Remote Sensing
- Will not focus on other JPEG 2000 markets
 - Cultural Heritage
 - HD Digital TV Capture (before editing and dissemination)
 - IP Security Cameras

JPEG2000: Requirements and Profiles

Original Requirements for JPEG 2000

- Internet applications (World Wide Web imagery)
 - Progressive in quality and resolution, fast decode
- Mobile applications
 - Error resilience, low power, progressive decoding
- Digital photography
 - Low complexity, compression efficiency
- Hardcopy color facsimile, printing and scanning
 - Compression efficiency, strip or tile processing
- Digital library/archive applications
 - Metadata, content management
- Remote sensing
 - Multiple components, fast encoding, region of interest
- Medical applications
 - Region of interest coding, lossy to lossless

Note: No Digital Cinema, Digital TV

Medical Imaging Market

- History: Medical Imaging
 - Unlike cinema, consumer imaging, and remote sensing Medical imaging has been one of the leaders in digital capture of imaging data
 - Several digital technologies were developed well before the first digital camera
 - Ultrasound imaging was developed in the 1960s
 - Computed Tomography (CT) scanning was developed in the early 1970s
 - Digital Radiography was develop in 1978
 - Magnetic Resonance Imaging (MRI) was developed in 1980
 - The 3D image processing techniques were developed in the early 1980s
 - Computer networks enabling digital transmission of CT scans in the late 1980s
 - Most of the digital captured data was still printed onto film until the 1990s (mainly because of user preference – doctors were used to looking at film and not monitors – as those doctors were replaced with younger radiologists – the monitors have become common place)

- Why Digital Medical Imaging
 - Reduced cost, footprint, materials
 - Digital capture saves the cost of film, processing and diagnostic centers no longer require to have film processing systems located on sight
 - The maintenance and operation of a film processing system is expensive and requires the handling of hazardous material
 - The storage of digital data requires significantly less footprint than the storage of film Xrays (and less requirements for environmental control of film type systems)
 - Reduced time to diagnostics and increased collaboration
 - Previous medical examinations would require the film to be processed and the radiologist to be at the same location (or the film was shipped to them)
 - With digital radiology once the image is captured and processed the data can be shipped to multiple radiologist for review
 - Digital medical imagery can be shared across contents to experts in certain types of issues or simply shared across a given hospital or hospital to a family physician
 - Enhancement and Image Processing
 - X-Rays commonly have poor dynamic range and sharpness image processing techniques can provide enhancements to the image that enable quicker and more accurate diagnoses
 - Digital Archive
 - Digital data can be organized in several different ways
 - Search, discover and access to historical data can be quicker than trying to find physical film files

- Advantages of JPEG 2000 over other DICOM allowed methods (JPEG, Lossless JPEG)
 - More flexible than the current standards can achieve better quality than the previous standards (JPEG and JPEG-LS), with greater capability and functionality
 - Resolution scalability and Region of Interest Access was key
 - Lossless requirements
 - For medical storage and high quality exploitation lossless compression is required
 - Bit Depth
 - Common medical images are greater than 8 bits, 12-16 bits is most common.
 - Multiple band/component data
 - Several of the systems have multiple bands which do not correspond to the common visual bands (red, green, blue)
 - 3D data (temporal or actual slices through a body). Part 2 of JPEG 2000 (Multi-component transformations) improves the compression efficiency of 3D data sets.

- For 3D image data, Part 2 of JPEG 2000 (Multi-component Transformations) was adopted as part of DICOM in 2005.
 - Examples of improved compression efficiency in next slides.
- For image streaming, JPIP was adopted by DICOM in January 2006.
 - describes a mechanism for using JPIP to transmit partial or full image data as part of a DICOM interaction between a server and a client.
 - Image pixel data only, all metadata is transmitted using DICOM.
- JPIP was adopted in DICOM based on the following 4 use cases:
 - Large single image navigation (uses region of interest scalability)
 - Thumbnail view of different imaging studies (uses resolution scalability)
 - Navigation of a stack of CT or MR images (uses resolution scalability)
 - Navigation of 3D volume of CT or MR images (uses resolution scalability in all 3 directions, creating a sub-resolution volume)

Standards Organizations

Digital Imaging and Communications in Medicine

Some Data Providers

Some of the Data Users/Software

AWARE

- Standards Adopted
 - Part 1 JPEG 2000 Baseline
 - Part 2 Multiple Component
 - Part 9 JPIP

Region of Interest Example

Digital Cinema Market

- History: Digital Cinema
 - Digital cinema is in the processes of replacing film projection for theaters across the world
 - The technology started in the late 1990s that this capability would be viable replacement for the current production of multiple copies of film
 - Before digital cinema Alternate content was being provided through digital applications – this enabled quicker and more flexible alternate content to be included into the movie going experience
 - Pre-movie commercials
 - Movie trailers
 - The migration to digital cinema really started in 2005
 - The migration is slow because of the capital investment and the current economical situation

ISO

- Why switch to digital cinema
 - Significant savings in distribution
 - Film copies cost over \$1,000 per film for bulk copies
 - Hard-drives for digital release are as low \$40
 - For a world wide release of 4,000 films this could be a savings of over \$4 Million per film
 - Greater Protection for content
 - World Wide release this reduced cost enables world wide releases (in different languages) which reduces possibilities of pirated copies showing up in places that are part of the staggered releases.

Increased 3D capability

- Digital Cinema enables cheaper and easier display of 3D content with better quality, commonly using the same base of technology
- Quality
 - Reduces "flicker", quality does not change over time like film (scratches, fading)
- Alternative content
 - Digital cinema enables high quality alternate content to be display at a large venue (sporting events, political events, meetings, . . .)

ISO

- Why was JPEG 2000 Selected
 - The first digital cinema systems were based on MPEG-2 but were not interoperable – there were issues in sharing content to these different systems
 - The Digital Cinema Initiative (DCI) was brought together to define stands that would enable interoperability across the market – they selected JPEG 2000 over other techniques because of the following issues
 - DCI studied different compression techniques
 - Studies showed at the highest quality JPEG 2000, MPEG-2, and MPEG-4 did not show significant visual quality difference at the bit rates required for applications in digital cinema
 - DCI also evaluated the Cost impact of different standards
 - JPEG 2000 does not require license fees
 - MPEG-2 and MPEG-4 have license fees that would increase the cost of distribution and may also require cost per "showing" of each movie for each screen
 - Separation from Digital Television and HDTV content
 - The movie industry does not want the high quality movies to be confused or easily converted to consumer based technology (DVD, BlueRay)
 - Bit Depth (digital cinema was 36 bit color)
 - Scalability (current Digital cinema systems are either 2K-by-1K or 4K-by-2K

- Current Status
 - There are about 36,000 digital cinema "screens"
 - The number of screens more than doubled in 2010
 - Projects are at 120,000 digital screens by 2015
 - In the US it is about 45% of screens in North America
 - Most of the major theaters have at least one digital screen
 - Each year there are about 200 major Hollywood titles and the top 30 to 40 releases are released in both digital and film
 - 3D theater experiences are increasing significantly most "animated" movies come out in 3D and several mainstream movies are starting to come out in 3D
 - AVATAR
 - Alice in Wonderland
 - TRON Legacy
 - Toy Story 3

Standards Organizations

Data Providers

• Some of the Data Users/Software

- Standards Adopted
 - Part 1 JPEG 2000 Baseline
 - Digital Cinema Profile

Source ISO/WG 1 JPEG committee

- There are over 16,000 DCI Projectors in North America
 - 1st JPEG 2000 based digital film Stealth at the Tokyo Film Festival
 - Serenity was the fist fully compliant DCI packaged film
 - The Shaggy Dog was first digital cinema delivered by Satellite
 - Corpse Bride is the first 4Kx2K distribution of a digital cinema (2Kx1K is the common now)
 - Chicken Little first major 3-D Digital Movie

GIS and Remote Sensing Market

Bernie Brower ITT Geospatial Systems bernard.brower@itt.com +1 585 269-5079

- History: GIS and Remote Sensing
 - Mapping has been around for ever
 - Aerial Photography has been around since the late 1800s
 - GIS and Remote sensing was mainly used by government and military applications
 - Mapping cities, mapping troops, mapping roads, city development plans, utility plans, . . .
 - GIS and Remote sensing became consumer based with the advent of the consumer GIS applications (MapQuest, Google Maps, Google Earth, Microsoft's Bing Maps, ...)
 - The collection of massive data to feed these consumer based GIS applications has grown – aerial photographic companies have grown, two commercial remote sensing companies (commercial satellite companies) have been started

- Why was JPEG 2000 Selected
 - JPEG DCT was not meeting the needs of the GIS market several different proprietary compression algorithms (mainly wavelet based) were gaining popularity
 - What is different from consumer based imaging (JPEG DCT)
 - Larger images (commonly larger than 10 megapixels)
 - Greater bit depth (images are commonly greater than 10 bits and sometimes greater than 14 bits deep)
 - Number of bands/multiple resolutions the current satellite systems provide five bands and one is 4X different than the other
 - Large images with access to region of interest based on user's needs
 - Users will access data over different level of bandwidth capability
 - Open Standard (not limited to proprietary compression and the costs associated with that)

- Commercial Remote Sensing (Satellite Collections)
 - Sensors continue to become more capable
- GeoEye
 - IKONS the first commercial remote sensing satellite was launched in September of 1999
 - 1 Meter resolution (Ground Sample Distance) in Panchromatic and 4 meter resolution in 4 spectral bands (red, green, blue, and Near Infrared)
 - Linear scanner camera over 13,000 pixels across in Panchromatic (3,000 for each color)
 - Since 1999 it has collected over 300 Million square kilometers of data (375 million megapixels)

- WorldView-2
 - GeoEye-2 most recent commercial remote sensing satellite – launched in October of 2009
 - 0.46 meter GSD Panchromatic, 1.84 Meter resolution spectral (8 bands – Coastal Blue, Blue, Green, Yellow, red, red edge, near infrared 1, near infrared 2)
 - Linear scanner over 36,000 pixels across Panchromatic (9,000 pixels across spectral bands)
 - Capable of collecting 975 thousand square kilometers per day

WordView-2 Satellite Picture from Digital Globe

Over 4 Million Megapixels per day available via JPEG 2000

WorldView-2 Image – Tuscaloosa, Al

- Example: JPEG 2000/JPIP GIS Application
- Norwegian Coast Guard (Kystvakten) is delivering satellite imagery to ships over low bandwidth while navigate through the ice-infested waters of the Arctic Ocean
 - European Space Agency's Envisat Satellite and Canada's Radarsat-1 are collected, processed, and sent to the ships within 30 minutes
 - The data is compressed with JPEG 2000 and served via Iridium Satellite Phones
 - Enables ships to get updated information that can save time, money and possible ships

- Example: JPEG 2000/JPIP Data Sharing Application
- HiRISE (High Resolution Imaging Science Experiment) is camera is a camera on board the Mars Reconnaissance Orbiter.
- NASA/JPL/UofA process the images and share them with the world through the University of Arizona (UofA) department of Planetary Sciences web site
 - http://hirise.lpl.arizona.edu/nea.php

