
JPEG2000 and Google Books

Jeff Breidenbach



Google's mission is to 
organize the world's 
information and make it 
universally accessible 
and useful.



Mass digitization
• broad coverage
• iteratively improve quality (reprocess, rescan)
• more than XXM books out of XXXM since 2004
• XXX nominal pages per book
• billions of images, petabytes of data

JPEG2000
• pre-processed images
• processed illustrations and color images
• library return format
• illustrations inside PDF files

Presenter
Presentation Notes
* Google's quality philosophy (iterate! iterate! iterate!) 

* Not what you want for the Dead Sea Scrolls

* Pretty good for train schedules from 1856.

* Image compression is typically not quality bottleneck (#1 is processing, e.g. crop #2 is acquisition, e.g. lighting)

=======

* Raise hand if you stay awake at night worrying about image quality. How about storage costs?

* World's literary heritage

* Avoid NASA's problem  "how the hell do we read these old moon tapes" ?



Presenter
Presentation Notes
example of image before processing (some manual cropping applied)



Presenter
Presentation Notes
example of processed image





Presenter
Presentation Notes
Show some more example images. Maybe show a live site book?



Presenter
Presentation Notes
This is why we use JP2K



Presenter
Presentation Notes
* we live in a world of transcoding

* Can't get uncompressed data over the wire fast enough [ true for USB, SCSI, ethernet ]

* Browsers don't like JP2K; and even if they did, we need to do arbitrary rescaling, add a watermark, etc.

* How many generations of lossy compression do you think a book image goes through? JPEG -> JP2K -> JP2K -> JPEG

* quality * space * time tradeoff

* JP2K can kill of JPEG mosquito noise artifact




Jhove (Rel. 1.4, 2009-07-30)
Date: 2011-05-03 20:06:36 PDT
RepresentationInformation: 00000001.jp2
ReportingModule: JPEG2000-hul, Rel. 1.3 (2007-01-08)
LastModified: 2006-09-22 11:01:00 PDT
Size: 231249
Format: JPEG 2000
Status: Well-Formed and valid
SignatureMatches:
JPEG2000-hul

MIMEtype: image/jp2
Profile: JP2
JPEG2000Metadata:
Brand: jp2
MinorVersion: 0
Compatibility: jp2
ColorspaceUnknown: true
ColorSpecs:
ColorSpec:
Method: Enumerated Colorspace
Precedence: 0
Approx: 0
EnumCS: sRGB

UUIDs:
UUIDBox:
UUID: -66, 122, -49, [...]
Data: 60, 63, 120, [...]

Codestreams:
Codestream:
ImageAndTileSize:
Capabilities: 0
XSize: 1165
YSize: 2037
XOSize: 0
YOSize: 0

XTSize: 1165
YTSize: 2037
XTOSize: 0
YTOSize: 0
CSize: 3
SSize: 7, 1, 1
XRSize: 7, 1, 1
YRSize: 7, 1, 1
CodingStyleDefault:
CodingStyle: 0
ProgressionOrder: 0
NumberOfLayers: 1
MultipleComponentTransformation: 1
NumberDecompositionLevels: 5
CodeBlockWidth: 4
CodeBlockHeight: 4
CodeBlockStyle: 0
Transformation: 0

QuantizationDefault:
QuantizationStyle: 34
StepValue: 30494, 30442, 30442, 30396, 28416, 28416, 28386, 

26444, 26444, 26468, 20483, 20483, 20549, 22482, 22482, 22369
NisoImageMetadata:
MIMEType: image/jp2
ByteOrder: big-endian
CompressionScheme: JPEG 2000
ImageWidth: 1165
ImageLength: 2037
BitsPerSample: 8, 8, 8
SamplesPerPixel: 3
Tiles:
Tile:
TilePart:
Index: 0
Length: 229827

Jhove

Presenter
Presentation Notes
This shows what features we use in JP2K; e.g. not many.

Half of these things confuse me. Like JP2 / JPX / raw codestreams

Rescale is done to arbitrary dimensions

Not useful for thumbnails, due to extremely high seek cost.

I'm basically happy to be able to embed resolution.

Jhove ships with many Linux distros (I packaged it)



<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
<x:xmpmeta xmlns:x='adobe:ns:meta/'>
<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'>
<rdf:Desciption rdf:about='' xmlns:tiff='http://ns.adobe.com/tiff/1.0/'>
<tiff:ImageWidth>1165</tiff:ImageWidth>
<tiff:ImageLength>2037</tiff:ImageLength>
<tiff:BitsPerSample>
<rdf:Seq>
<rdf:li>8</rdf:li>
<rdf:li>8</rdf:li>
<rdf:li>8</rdf:li>
</rdf:Seq>
</tiff:BitsPerSample>
<tiff:Compression>34712</tiff:Compression>
<tiff:PhotometricInterpretation>2</tiff:PhotometricInterpretation>
<tiff:Orientation>1</tiff:Orientation>
<tiff:SamplesPerPixel>3</tiff:SamplesPerPixel>
<tiff:XResolution>300/1</tiff:XResolution>
<tiff:YResolution>300/1</tiff:YResolution>
<tiff:ResolutionUnit>2</tiff:ResolutionUnit>
<tiff:DateTime>2004-04-27T00:00:00+08:00</tiff:DateTime>
<tiff:Artist>Google, Inc.</tiff:Artist>
<tiff:Make>MDP</tiff:Make>
<tiff:Model>Photostation v1</tiff:Model>
<tiff:Software>Photostation v1 scanning software</tiff:Software>
</rdf:Desciption>
<rdf:Desciption rdf:about='' xmlns:dc='http://purl.org/dc/elements/1.1/'>
<dc:source>jp2k/0345430573/00000001.jp2</dc:source>
</rdf:Desciption>
</rdf:RDF>
</x:xmpmeta>
<?xpacket end='w'?>

Embedded XMP

Presenter
Presentation Notes
Example of XMP metadata, stored inside the image.



// Lower number == less distortion == higher fidelity
const int kJp2kLosslessQuality = 0;

// decent
const int kJp2kOceanDefaultNDRawQuality = 50980; 

// same space as JPEG-75
const int kJp2kOceanDefaultNDCleanQuality = 51180;

// removes JPEG artifacts
const int kJp2kOceanDefaultSFRawQuality = 51315; 

// GEFGW
const int kJp2kOceanDefaultSFCleanQuality = 51350;

// acceptable
const int kJp2kOceanGRINImagePageQuality = 51492;

// marginal
const int kJp2kOceanGRINTextPageQuality = 52004;

The Joys of Slope Rate Distortion

Presenter
Presentation Notes
* perceptual weighting makes it even more confusing

*import guidelines in bits per pixel (very unsatisfactory)

* Scanning equipment makes a difference

* A/B testing of a few hundred examples + PSNR

* Quality guy vs storage guy

* For JPEG2000, informal A/B testing showed dark shadowy areas of art books are the first things to degrade


https://cs.corp.google.com/#google3/ocean/imageprocessing/jp2k_io.h&ct=xref_usages&gs=cpp:kJp2kLosslessQuality@google3/ocean/imageprocessing/jp2k_io.h%257Cdef&gsn=kJp2kLosslessQuality
https://cs.corp.google.com/#google3/ocean/imageprocessing/jp2k_io.h&ct=xref_usages&gs=cpp:kJp2kOceanDefaultNDRawQuality@google3/ocean/imageprocessing/jp2k_io.h%257Cdef&gsn=kJp2kOceanDefaultNDRawQuality
https://cs.corp.google.com/#google3/ocean/imageprocessing/jp2k_io.h&ct=xref_usages&gs=cpp:kJp2kOceanDefaultNDCleanQuality@google3/ocean/imageprocessing/jp2k_io.h%257Cdef&gsn=kJp2kOceanDefaultNDCleanQuality
https://cs.corp.google.com/#google3/ocean/imageprocessing/jp2k_io.h&ct=xref_usages&gs=cpp:kJp2kOceanDefaultSFRawQuality@google3/ocean/imageprocessing/jp2k_io.h%257Cdef&gsn=kJp2kOceanDefaultSFRawQuality
https://cs.corp.google.com/#google3/ocean/imageprocessing/jp2k_io.h&ct=xref_usages&gs=cpp:kJp2kOceanDefaultSFCleanQuality@google3/ocean/imageprocessing/jp2k_io.h%257Cdef&gsn=kJp2kOceanDefaultSFCleanQuality
https://cs.corp.google.com/#google3/ocean/imageprocessing/jp2k_io.h&ct=xref_usages&gs=cpp:kJp2kOceanGRINImagePageQuality@google3/ocean/imageprocessing/jp2k_io.h%257Cdef&gsn=kJp2kOceanGRINImagePageQuality
https://cs.corp.google.com/#google3/ocean/imageprocessing/jp2k_io.h&ct=xref_usages&gs=cpp:kJp2kOceanGRINTextPageQuality@google3/ocean/imageprocessing/jp2k_io.h%257Cdef&gsn=kJp2kOceanGRINTextPageQuality


JP2K/PDF Compatibility Credit: Mike Cane

Presenter
Presentation Notes
PDF

2003 Adobe Spec (1.5)

* originally for desktop/offline

* also used for print on demand

* tablet nightmare

* Adobe Digital Editions

http://mikecanex.files.wordpress.com/2010/11/ncgb006.jpg?w=470&h=640


Thank you / questions



Backup Slides



•WebP 
mainly for publishing on the Web 
very efficient coding (e.g: segmentation) esp. 
at low bitrate. Comparable to h264. 
block-based: decoding footprint is very light 
(memory scales with the width) 
fast decoding: 2x-3x slower than jpeg (9x for 
JP2K with Kakadu) 
encoding still slow, being worked on 
royalty-free 
evolving quickly with container features


	��JPEG2000 and Google Books
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Thank you / questions
	Backup Slides
	WebP�mainly for publishing on the Web�very efficient coding (e.g: segmentation) esp. at low bitrate. Comparable to h264.�block-based: decoding footprint is very light (memory scales with the width)�fast decoding: 2x-3x slower than jpeg (9x for JP2K with Kakadu)�encoding still slow, being worked on�royalty-free�evolving quickly with container features

