
Embedding Metadata in Digital Audio Files
Introductory Discussion for the Federal Agencies Guideline

By the Federal Agencies Audio-Visual Working Group
UUhttp://www.digitizationguidelines.gov/audio-visual/

Version 2, Approved by Working Group on March 23, 2012.

TABLE OF CONTENTS

Page

INTRODUCTION

 2 What is this document?

 2 Why embed metadata?

 2 Limits to the Audio-Visual Working Group’s current proposal

 3 Constraints imposed by WAVE and BWF file specifications, future explorations

DISCUSSION

 5 Versioning and Broadcast WAVE

 5 Data Elements in the WAVE (RIFF) INFO List

 7 Data Elements in the BWF bext Chunk

 10 The Coding History element

 11 The Loudness elements and the potential use of loudness metadata in heritage institutions

 14 Other Technical Metadata in WAVE Files: the WAVE Format Chunk

 15 Audio-data checksums, an Ad Hoc MD5 Chunk, and the EBU Quality Chunk

 1

INTRODUCTION

What is this document?

This is one of four documents pertaining to the embedding of metadata in digital audio files prepared
by the Federal Agencies Audio-Visual Working Group in 2011. The three companion documents are:
 Guideline for Federal Agency Use of Broadcast WAVE Files (Version 2.0)
http://www.digitizationguidelines.gov/audio-visual/documents/Embed_Guideline_20120323.pdf
 Consultant’s report on embedding options in digital audio files
http://www.digitizationguidelines.gov/audio-visual/documents/AVPS_Audio_Metadata_Overview_090612.pdf
 Discussion paper: Identifiers: Types and Characteristics
http://www.digitizationguidelines.gov/audio-visual/documents/IdentifiersTypesCharacteristics_20111121.pdf

Meanwhile, access is still provided to the two predecessor documents:
 Version 1.0 of the Guideline (September 15, 2009):
http://www.digitizationguidelines.gov/audio-visual/documents/Embed_Guideline_090915.pdf

 The September 15, 2009 version of this introduction:
http://www.digitizationguidelines.gov/audio-visual/documents/Embed_Intro_090915.pdf

Why embed metadata?

Embedded metadata can provide information to and support functionality for various persons and
systems at a variety of points in the content life cycle. For example, it can help the digitizing unit or
organization as it produces and preserves content. It can serve persons or systems who receive
content that is disseminated by the digitizing unit or organization. Some metadata elements are
especially valuable to internal actors, some to external, and some to both.

Embedded metadata, of course, is rarely an agency’s only metadata. In most archiving and
preservation programs, workflow and archiving are supported by one or more databases, cataloging
systems, finding aids, and the like, each of which contains metadata. Many if not all metadata
elements turn up in more than one place, a good thing since redundancy supports long-term
preservation. (Being in more than one place, however, can make it difficult to update metadata
across the board, unless this is supported in an automated way by an organization’s technical
infrastructure.)

Limits to the Audio-Visual Working Group’s current proposal

As the larger federal agencies activity proceeds, the current investigation by the Audio-Visual
Working Group is addressing only a portion—albeit a pressing and important portion—of the larger
topic. Here are some of our limits:
 Format type. The associated guideline pertains to embedded metadata in audio files that result

from the reformatting of analog content.
 Content lifecycle. The guideline is concerned with the initial stages of production and archiving.

Of course, some of the elements identified—e.g., the embedding of appropriate identifiers—will
“pay off” in later stages of the life cycle.

 Files not packages. The Working Group uses the term digital file to name a single computer file,
e.g., a WAVE file. The term digital package is used to name a digital entity that represents a
single intellectual or logical entity, e.g., a digital copy of a published long-playing phonograph

 2

1 The emphasis of the associated guideline is on the metadata to be embedded
in files.

 Master files more than derivative files. The guideline is concerned with embedded data in
master and production master files and, to a lesser degree, with derivative files.

 Administrative and descriptive metadata, including identifiers. The focus for the guideline is on
administrative and descriptive metadata. This is not to discount the importance of technical
metadata but, for audio files, this category seems to be well established. See the section "Other
technical metadata" (page 12 below) for more information on the format chunk in WAVE files.

Constraints imposed by WAVE and BWF file specifications, future explorations

The options for embedding administrative and descriptive metadata are limited by the WAVE and
BWF formats’ specifications. The underlying structure has been inherited from the 1991 Microsoft-
IBM RIFF specification2 that calls for an extensible structure made up of chunks. A number of
chunks are specified in this document, including what is called the INFO list chunk (and
“subchunks”) for descriptive and administrative metadata. Over the years, various organizations
have added new chunks. Important chunks were added by the European Broadcasting Union (EBU)
as part of its standardization of the Broadcast WAVE format (a WAVE subtype often referred to as
BWF). The most widely used BWF chunk is called bext (Broadcast Extension), which allows for
additional metadata to serve the needs of broadcasters. The data elements available in INFO and the
bext Chunk are listed in later sections of this document.

Three other metadata chunks of interest have been established for Broadcast WAVE files. The first
of these was developed by the EBU in 2003. It is an additional chunk for XML data called the axml
Chunk, and a corollary schema called aXML.3 Although of interest and potentially very useful for
archiving, the axml Chunk does not seem to have been widely adopted by broadcasters and digital
audio workstation manufacturers, although some audio applications like Basehead can read the
aXML data.4

1 This limit means that this set of guidelines will not address the specialized metadata that may be used to package
multichannel (http://www.digitizationguidelines.gov/term.php?term=multitrackaudio), multitrack
(http://www.digitizationguidelines.gov/term.php?term=multitrackaudio), and multisegment recordings.
Multichannel and multitrack are defined by the glossary entries in the URLs cited; multisegment refers to such
things as single, lengthy performances that have been broken into segments, each of which is represented by its own
file. This topic receives insightful discussion in the final report from the Sound Directions project carried out by
Indiana and Harvard Universities; see
http://www.dlib.indiana.edu/projects/sounddirections/papersPresent/index.shtml.
2 RIFF is documented in Multimedia Programming Interface and Data Specifications 1.0 (1991, IBM Corporation
and the Microsoft Corporation). This document is available at several Web sites, including
http://www.kk.iij4u.or.jp/~kondo/wave/mpidata.txt and http://www.tactilemedia.com/info/MCI_Control_Info.html.
3 “Specification of the Broadcast Wave Format; A Format for Audio Data Files in Broadcasting; Supplement 5:
<axml> Chunk,” http://tech.ebu.ch/docs/tech/tech3285s5.pdf
4 From the Basehead Web site (http://www.baseheadinc.com, consulted November 10, 2011): "BaseHead is our
monster product for searching and finding your Sound Effects, Music and Audio Files.
It already dominates the Video Game Industry "

 3

http://www.digitizationguidelines.gov/term.php?term=multitrackaudio
http://www.digitizationguidelines.gov/term.php?term=multitrackaudio
http://www.dlib.indiana.edu/projects/sounddirections/papersPresent/index.shtml
http://www.kk.iij4u.or.jp/%7Ekondo/wave/mpidata.txt
http://www.tactilemedia.com/info/MCI_Control_Info.html
http://tech.ebu.ch/docs/tech/tech3285s5.pdf
http://www.baseheadinc.com/

The second metadata chunk, also for XML data, was developed by a British trade group, the Institute
of Broadcast Sound (IBS).5 The current version of the specification is dated 2010; earlier versions
of the specification can be found in the Internet Archive Wayback machine from 2004 forward.6
The accompanying report7 from AudioVisual Preservation Solutions describes the iXML chunk as
having been “created by group of audio hardware and software manufacturers in order to facilitate
transfer of production metadata across systems and is offered as an expansion of the bext chunk.”8
iXML is not just a chunk, it is also an extensible XML schema designed for use in audio production
and editing.9 As of this writing, the iXML website lists 16 companies and 23 products that use the
data structure, and iXML is also being developed as a standard by the Audio Engineering Society
(AES). Standardization by the AES could lead to greater adoption outside the audio production
community.

The third metadata chunk is an implementation of Adobe's XMP specification. This structure can
exist as a "sidecar" file or be embedded in a variety of content-essence files, including WAVE (need
not be Broadcast WAVE).10 XMP has been widely adopted by professional photographers because
it is well supported in the ubiquitous family of Adobe imaging software, e.g., Photoshop. XMP is
frequently embedded in TIFF, JPEG, DNG, PDF, and other image formats. For photographs, the
XMP data is generally structured to comply with a news-oriented metadata standard from
International Press and Telecommunications Council (IPTC).11 Although Adobe and the IPTC are
actively exploring ways to expand the use of XMP among audio and video producers, especially in
the field of journalism, the broad array of companies who market audiovisual production and editing
software may or may not embrace what is viewed as an Adobe specification.

On paper, these chunks overcome many of the limitations of the BWF bext Chunk and the RIFF
INFO List. Their low levels of adoption in the archival world at this time, however, make them less
appealing than one would wish. Nevertheless, the Working Group will explore them in the future as
possible improved solutions to the metadata-embedding needs of preservation-oriented archives.

5 From the IBS Web site (http://www.ibs.org.uk/, consulted November 10, 2011): "The IBS was founded in 1977 by
sound balancers in radio and television, who felt a need for a better interchange of ideas between practitioners in the
various areas of broadcast audio."
6 The URL for the 2010 specification is http://www.ixml.info/ (consulted November 10, 2011). The earliest
Wayback instance is version 1.27 dated October 9, 2004;
http://web.archive.org/web/20040924101734/http://www.ixml.info/ (consulted November 10, 2011).
7 http://www.digitizationguidelines.gov/audio-visual/documents/AVPS_Audio_Metadata_Overview_090612.pdf
8 IBID
9 For more information about iXML see http://www.gallery.co.uk/ixml/
10 The URL for the embedding part of the XMP specification is
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart3.pd
f (consulted November 10, 2011).
11 See http://www.iptc.org/IPTC4XMP/ (consulted November 10, 2011).

 4

http://www.ibs.org.uk/
http://www.ixml.info/
http://web.archive.org/web/20040924101734/http://www.ixml.info/
http://www.digitizationguidelines.gov/audio-visual/documents/AVPS_Audio_Metadata_Overview_090612.pdf
http://www.gallery.co.uk/ixml/
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart3.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMPSpecificationPart3.pdf
http://www.iptc.org/IPTC4XMP/

DISCUSSION

Versioning and Broadcast WAVE

There have been three iterations of the BWF format under the general specification number EBU
Tech 3285. Version 0 (as it came to be called) was published in 1997. Version 1, which differs
from Version 0 in the use of 64 of the 254 reserved bytes to contain a SMPTE UMID identifier,
was published July 2001. Version 1 was followed by six supplements with additional
information. Version 2 references these supplements and adds elements that pertain to loudness
metadata.

Because Version 0 files do not have a space reserved for the UMID and neither Version 0 or
Version 1 files have spaces for loudness metadata, the writers of this document have concocted a
simple rubric for determining the version of a Broadcast WAVE file:

 If a file has BEXT data but no UMID or loudness values, it is Version 0. (The value for
the BEXT Version element is not specified by EBU; FADGI recommends using 0000h)

 If a file has BEXT data and a UMID value but no loudness values, it is Version 1. (EBU
specifies 0001h as the value for the Version element.)

 If a file has BEXT data and loudness values, it is Version 2. (EBU specifies 0002h as the
value for the Version element.)

What are the potential problems in entering the wrong version for a file? We do not foresee
problems beyond the possibility that a Version 2-compliant piece of software may not see and/or
act upon the loudness metadata in a file that does not declare itself as Broadcast WAVE Version
2.

As for compatibility with respect to Version 2, the specification itself has this to say:

“Version 2 is a substantial revision of Version 1 which incorporates loudness metadata (in
accordance with EBU R 128 [2]) and which takes account of the publication of Supplements 1 –
6 and other relevant documentation. This version is fully compatible with Versions 0 and 1, but
users who wish to ensure that their files meet the requirements of EBU Recommendation R 128
will need to ensure that their systems can read and write the loudness metadata.”

Data Elements in the WAVE (RIFF) INFO List

The INFO chunks are inherited by WAVE and BWF from the specification for their parent, the
Resource Interchange File Format (RIFF).12 The following descriptive overview was collected on
December 22, 2008, from an online document titled “Inside the RIFF Specification” by Hamish
Hubbard, dated September 1, 1994.13.
 LIST chunks are the only chunks apart from RIFF chunks that may contain their own

subchunks LIST chunks are usually subchunks of RIFF chunks themselves. Like RIFF

12 See http://www.digitalpreservation.gov/formats/fdd/fdd000025.shtml
13 http://drdobbs.com/database/184409308

 5

http://www.digitalpreservation.gov/formats/fdd/fdd000025.shtml
http://drdobbs.com/database/184409308

chunks, LIST chunks have a four-character code in the first four bytes of their data area. This
code specifies the list type (analogous to a RIFF chunk's form type)

 For example, a LIST chunk of list type INFO may contain subchunks such as INAM (the name
of the data stored in the file) and ICRD (creation date). LIST chunks of type INFO are
optional in current RIFF forms, but their use is recommended. The LIST chunks' subchunks
can store much more information about the file than is available from the filename and date
stamp. These LIST subchunks share a common format: Each contains one ASCII Z (NULL
terminated) string.

The following introductory statement and element list is from the RIFF specification, the
Multimedia Programming Interface and Data Specifications 1.0, issued as a joint design by IBM
Corporation and Microsoft Corporation, August 1991. In this document the block of data is called
INFO list chunk (singular) and in another section there is a reference to the list chunk type as
having subchunks. Regarding the “values” that can be associated with each subchunk or element,
the writers of this document believe that there is no particular limit on the length of the null-
terminated coded chunks. We also believe that these subchunks are not repeatable. Comments
from specialists in the field will be welcome.

The INFO list is a registered global form type that can store information that helps identify the
contents of the chunk. This information is useful but does not affect the way a program interprets
the file; examples are copyright information and comments. An INFO list is a LIST chunk with list
type INFO. The following shows a sample INFO list chunk:

LIST('INFO' INAM("Two Trees"Z)
 ICMT("A picture for the opening screen"Z))

An INFO list should contain only the following chunks. New chunks may be defined, but an
application should ignore any chunk it doesn't understand. The chunks listed below may only
appear in an INFO list. Each chunk contains a ZSTR, or null-terminated text string.

Chunk ID Description
IARL Archival Location. Indicates where the subject of the file is archived.
IART Artist. Lists the artist of the original subject of the file. For example, Michelangelo.
ICMS Commissioned. Lists the name of the person or organization that commissioned the

subject of the file. For example, Pope Julian II.
ICMT Comments. Provides general comments about the file or the subject of the file. If

the comment is several sentences long, end each sentence with a period. Do not
include newline characters.

ICOP Copyright. Records the copyright information for the file. For example, Copyright
Encyclopedia International 1991. If there are multiple copyrights, separate them by
a semicolon followed by a space.

ICRD Creation date. Specifies the date the subject of the file was created. List dates in
year-month-day format, padding one-digit months and days with a zero on the left.
For example, 1553-05-03 for May 3, 1553.

ICRP Cropped. Describes whether an image has been cropped and, if so, how it was
cropped. For example, lower right corner.

 6

IDIM Dimensions. Specifies the size of the original subject of the file. For example, 8.5 in
h, 11 in w.

IDPI Dots Per Inch. Stores dots per inch setting of the digitizer used to produce the file,
such as 300.

IENG Engineer. Stores the name of the engineer who worked on the file. If there are
multiple engineers, separate the names by a semicolon and a blank. For example,
Smith, John; Adams, Joe.

IGNR Genre. Describes the original work, such as, landscape, portrait, still life, etc.
IKEY Keywords. Provides a list of keywords that refer to the file or subject of the file.

Separate multiple keywords with a semicolon and a blank. For example, Seattle;
aerial view; scenery.

ILGT Lightness. Describes the changes in lightness settings on the digitizer required to
produce the file. Note that the format of this information depends on hardware used

IMED Medium. Describes the original subject of the file, such as, computer image,
drawing, lithograph, and so forth.

INAM Name. Stores the title of the subject of the file, such as, Seattle From Above.
IPLT Palette Setting. Specifies the number of colors requested when digitizing an image,

such as 256.
IPRD Product. Specifies the name of the title the file was originally intended for, such as

Encyclopedia of Pacific Northwest Geography.
ISBJ Subject. Describes the contents of the file, such as Aerial view of Seattle.
ISFT Software. Identifies the name of the software package used to create the file, such

as Microsoft WaveEdit.
ISHP Sharpness. Identifies the changes in sharpness for the digitizer required to produce

the file (the format depends on the hardware used).
ISRC Source. Identifies the name of the person or organization who supplied the original

subject of the file. For example, Trey Research.
ISRF Source Form. Identifies the original form of the material that was digitized, such as

slide, paper, map, and so forth. This is not necessarily the same as IMED.
ITCH Technician. Identifies the technician who digitized the subject file. For example,

Smith, John.

Data elements in the BWF bext Chunk

The list of elements and a descriptive definition that follows is taken from this standards document
from the European Broadcasting Union (EBU): “BWF – A Format for Audio Data Files in
Broadcasting,” ver. 2.0, Tech 3285 (Geneva: Switzerland: European Broadcasting Union, May,
2011).14 The limits on the extent of the values permitted for each tag are provided in the
definitions. The writers’ understanding is that these fields are not repeatable.

Description. ASCII string (maximum 256 characters) containing a free description of the

sequence. To help applications which only display a short description, it is
recommended that a résumé of the description is contained in the first 64
characters, and the last 192 characters are use for details. If the length of the
string is less than 256 characters, the last one is followed by a null character

14 http://tech.ebu.ch/docs/tech/tech3285.pdf

 7

http://tech.ebu.ch/docs/tech/tech3285.pdf

(00)

Originator. ASCII string (maximum 32 characters) containing the name of the

originator/producer of the audio file. If the length of the string is less than 32
characters, the field is ended by a null character.

OriginatorReference. ASCII string (maximum 32 characters) containing a non ambiguous

reference allocated by the originating organization. If the length of the string
is less than 32 characters, the field is ended by a null character. Note: The
EBU has defined a format for the OriginatorReference field. See EBU
Recommendation R99-1999.

OriginationDate. Ten ASCII characters containing the date of creation of the audio sequence.

The format is .yyyy-mm-dd. (year-month-day). Year is defined from 0000 to
9999; Month is defined from 1 to 12; Day is defined from 1 to 28,29,30 or
31. The separator between the items can be anything but it is recommended
that one of the following characters is used: .-. hyphen ._. underscore .:.
colon . . space ... stop [Editor’s note: it is not possible to use the syntax of
ISO 8601 datetime for this element. Thus date and time cannot be expressed
in terms of UTC.]

OriginationTime. Eight ASCII characters containing the time of creation of the audio

sequence. The format is .hh-mm-ss. (hours-minutes-seconds). Hour is
defined from 0 to 23. Minute and second are defined from 0 to 59. The
separator between the items can be anything but it is recommended that one
of the following characters is used: .-. hyphen ._. underscore .:. colon . .
space ... stop [Editor’s note: it is not possible to use the syntax of ISO 8601
datetime for this element. Thus date and time cannot be expressed in terms
of UTC.]

TimeReference. This field contains the timecode of the sequence. It is a 64-bit value which

contains the first sample count since midnight. The number of samples per
second depends on the sample frequency which is defined in the field
<nSamplesPerSec> from the <format chunk>. [Editor’s note: This metadata
element records what is sometimes called a timestamp, i.e., the start time for
a given file, in terms of a timeline of the sort often provided by digital audio
workstation software. Timelines are often set up to begin at 00:00:00

15 The acronym LUFS stands for Loudness Unit referenced to Full Scale. We have taken this term from EBU –
Recommendation R 128 (http://tech.ebu.ch/docs/r/r128.pdf), which notes that LUFS is compliant with international
naming conventions and is equivalent to LKFS, as used in the important ITU-R BS.1770-2 specification pertaining
to measurement (http://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1770-2-201103-I!!PDF-E.pdf). These terms
have been defined with slight variations by different standards group; see the 2009 Note on measurement units for
loudness by Søren H. Nielsen (http://www.tcelectronic.com/media/nielsen_loudness_units.pdf, consulted November
10, 2011). There is also a 2010 working document (not publicly available) titled ‘Proposal for the rationalisation of
nomenclature used in ITU R BS.1770 and ITU-R BS.1771’ (see http://www.itu.int/md/R07-WP6C-C-0324/en,
consulted November 10, 2011).

 8

http://tech.ebu.ch/docs/r/r128.pdf
http://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1770-2-201103-I!!PDF-E.pdf
http://www.tcelectronic.com/media/nielsen_loudness_units.pdf
http://www.itu.int/md/R07-WP6C-C-0324/en

(“midnight”). Files can be placed on the timeline in terms of their sequence
using TimeReference. In <bext>, the time value is provided in terms of
sample count for timeline location for the first sample in the file. The
Working Group understands that this element has special value in the case
of multitrack or multisegment content, to be explored further at another
time.]

Version. An unsigned binary number giving the version of the BWF. This number is

particularly relevant for the carriage of the UMID and loudness information.
For Version 1 it shall be set to 0001h and for Version 2 it shall be set to
0002h.

UMID. 64 bytes containing a UMID (Unique Material Identifier) to standard

SMPTE 330M. If only a 32 byte “basic UMID” is used, the last 32 bytes
should be set to zero. (The length of the UMID is given internally.)

Reserved. 190 bytes reserved for extensions. If the Version field is set to 0001h, these

190 bytes must be set to a NULL (zero) value.

CodingHistory. Non-restricted ASCII characters, containing a collection of strings

terminated by CR/LF. Each string contains a description of a coding process
applied to the audio data. Each new coding application is required to add a
new string with the appropriate information.

This information must contain the type of sound (PCM or MPEG) with its
specific parameters:
-- PCM : mode (mono, stereo), size of the sample (8, 16 bits) and sample
frequency:
-- MPEG : sample frequency, bit-rate, layer (I or II) and the mode (mono,
stereo, joint stereo or dual channel).

It is recommended that the manufacturers of the coders provide an ASCII
string for use in the coding history. Note: The EBU has defined a format for
CodingHistory which will simplify the interpretation of the information
provided in this field. See EBU Recommendation R98-1999.

LoudnessValue A 16-bit signed integer, equal to round (100x the Integrated Loudness Value
of the file in LUFS).15

LoudnessRange A 16-bit signed integer, equal to round (100x the Loudness Range of the file

in LU).
MaxTruePeakLevel A 16-bit signed integer, equal to round (100x the Maximum True Peak

Value of the file in dBTP)>

MaxMomentaryLoudness A 16-bit signed integer, equal to round (100x the highest value of the

Momentary Loudness Level of the file in LUFS).

 9

MaxShortTermLoudness A 16-bit signed integer, equal to round (100x the highest value of the

Short-term Loudness Level of the file in LUFS).

Note: Loudness and related metadata is discussed below.

The CodingHistory element

The Coding History element is interesting because it offers a place and a method for recording
process or digital-provenance metadata. The use of this field to record some of the reformatting
history for given item has been outlined in the final report from the Sound Directions project
carried out by Indiana and Harvard Universities.16 The report describes the use of Coding History
at Indiana University and their discussion is presented in the box that follows.

The Coding History field is designed to hold data on the digitizing process including signal chain
specifics, sample rate and bit depth, and other elements. It is defined as a collection of strings, each
presented on a separate line, containing a history of the coding processes applied to the file. Each
variable within a string is separated by a comma. A new line is added when the coding history
related to the file is changed, and each line should end with a carriage return and line feed which
are automatically added by WaveLab. According to the EBU, each line should contain these
elements, as appropriate to the coding history being described:
-- Coding algorithm. String begins with “A=” For example: A=ANALOG, PCM, MPEG1L3, and
others
-- Sampling frequency. String begins with “F=”
-- Bit-rate, for MPEG coding only. String begins with “B=”
-- Word length. String begins with “W=”
-- Mode—this corresponds to sound field, such as mono, stereo, or dual-mono. String begins with
“M=”
-- Text, free string—a free ASCII-text string for in-house use. The EBU suggests documenting
devices in the signal chain and analog source recording formats in this field. String begins with
“T=”

At Indiana, we include three lines of coding history in our BWF files for the digitization of analog
recordings. The first documents the analog source recording, the second contains data on
digitization chain, while the third records information on the storage of the file.

For example:
A=ANALOG,M=mono,T=Studer A810; SN3690; 15 ips; open reel tape,
A=PCM,F=96000,W=24,M=mono,T=Benchmark; ADC1; SN00252; A/D,
A=PCM,F=96000,W=24,M=mono,T=Lynx; AES16; DIO,

Line 1 reads: an analog open reel tape with a mono sound field was played back on a Studer A810
tape machine with serial number 3690. Tape speed was 15 ips.

16 http://www.dlib.indiana.edu/projects/sounddirections/papersPresent/index.shtml

 10

http://www.dlib.indiana.edu/projects/sounddirections/papersPresent/index.shtml

While the EBU document suggests including the tape brand and product number as the last
element, we prefer a general designation of the format for several reasons: it is more useful to
know the format than the specific brand and it avoids the need to interpret the brand information
and playback machine data to identify the format. When a range of formats—analog cassettes,
discs, DATs and others—are routinely digitized this interpreting might become unnecessarily
difficult. In addition, the format remains constant through an entire collection (the brand and
product number may or may not), providing one less element that requires data entry for each
source recording.

Line 2 reads: the tape was digitized in mono mode using a Benchmark ADC1 A/D converter with
serial number 00252 at 96 kHz sample rate with a bit depth of 24 bits.

Line 3 reads: the tape was stored as a 96/24 mono file using a Lynx AES16 digital input/output
interface.

If we apply additional coding processes to produce a derivative file we add a fourth line in the
header of the derivative file. For example:

A=PCM,F=44,100,W=16,M=mono,T=Steinberg; WaveLab 6; Resampler, Waves L2; Dither;
DAW,

This line reads: A 16 bit, 44.1 kHz file was created using the WaveLab 6 Resampler and Waves L2
Dither in the Digital Audio Workstation.

The loudness elements and the potential use of loudness metadata by heritage institutions
The most significant new development in the BWF standard and, by extension, in the Federal
Agencies Working Group's revised guideline, is the inclusion of metadata elements pertaining to
the measurement of loudness in the file. The European Broadcast Union (EBU) added these fields
to version 2 of their Broadcast Wave Format specification in May, 2011. The EBU document
Loudness normalisation and permitted maximum level of audio signals17 lists the reasons for the
change, including the following:
 peak normalization of audio signals has led to considerable loudness differences between

programs;
 the resulting loudness inconsistencies are the cause of the most viewer/listener complaints;
 an international standard for measuring audio programme loudness has been defined in ITU-R

BS.1770, introducing the measures LU (Loudness Unit) and LUFS (Loudness Unit, referenced
to Full Scale);18

 a gated measurement of Programme Loudness (hence measuring ‘Foreground Loudness’) is
advantageous to improve the loudness matching of programs with a wide loudness range;

In addition to broadcasting, there is interest in loudness in the recording industry. Industry
commentators have written about “loudness wars,” i.e., the continuing one-upmanship between

17 EBU R 128, August 2011, http://tech.ebu.ch/docs/r/r128.pdf
18 See footnote 16 above, concerning the definitions of LUFS and LKFS.

 11

http://tech.ebu.ch/docs/r/r128.pdf

recording labels to produce successively louder analog and, later, digital music releases. With the
advent of the iPod these loudness wars have gotten even more aggressive with record labels. EBU-
loudness-compliant audio files could, if played back in loudness-compliant software, be
normalized so that no programs or musical selections are objectionably louder than the others. This
could also be applied to broadcast settings, obviating the potential for listener discomfort at
strikingly louder commercials or other content.

The EBU and ITU-R’s application of loudness metrics represents a shift in how audio levels are
measured and declared. The traditional measure has focused on peaks, the moments of high
volume that must be managed to prevent over-modulation or clipping. For many years, the VU
meter was used to measure audio peaks. VU meters are a “slow” measurement that averages the
peaks and troughs of a sound recording. One of the challenges of the peak meter, according to the
Wikipedia article Peak meter,19 is that “because of the mass of the moving parts and mechanics,
the response time of these older meters could have been anywhere from a few milliseconds to a
second or more. Thus, the meter might not ever accurately reflect the signal at every instant of
time, but the constantly changing level, combined with the slower response time, led to more of an
‘average’ indication.” In other words, if there are signal peaks or troughs of shorter duration than
the peak meters’ response time, they may not be accurately represented. Over time, various
refinements were sought. The Wikipedia article Peak program meter20 describes some
developments: the true peak programme meter, the quasi-peak programme meter (QPPM), the
sample peak programme meter (SPPM), and the over-sampling peak programme meter. It is worth
noting that replacing VU and peak meters with loudness measurements does not imply that these
measuring devices were not high-quality, standardized pieces of equipment. Their limitations
stemmed from the limitations of human perception – because the needle-based displays were
intended to be eye-legible, they could only move so fast before they became a blur. There are also
limits on how quickly the human ear can integrate sounds. While VU and peak meters could
measure sounds with considerable precision, the EBU’s loudness measurements could potentially
be more precise by obviating (or circumventing) the recordist’s perceptual limitations.21

Meanwhile, professionals noted that peak readings were not sufficient to manage sound volume in
terms of human perception. Loudness metrics are a response to this technical difficulty. The
measurements are designed to be a “practical solution for the task of finding an objective
measurement of what is essentially a subjective impression (loudness).”22 The document EBU R
128: Audio loudness normalization and permitted maximum level of audio signal uses the terms
Programme Loudness, Loudness Range and Maximum True Peak Level to describe audio signals.
The definitions of these terms, from EBU R 128, are below:

19 http://en.wikipedia.org/wiki/Peak_meter, consulted on September 13, 2011.
20 http://en.wikipedia.org/wiki/Peak_programme_meter, consulted on September 13, 2011.
21 Richard Wright of the BBC reminds us that “the ITU ‘loudness meter’ also integrates power over a defined
time,... The ‘new’ method integrate[s] digitally with a rectangular window instead of exponential decay as in an
analogue meter (achieved with hardware by use of a resistor and a capacitor; it wasn’t the meter movement itself
that defined the response time) and the ‘new’ approach uses memory and processing to accumulate a sequence of
‘short-term integrations of power’ over an entire audio file, and then do statistical processing to ‘gate’ the levels that
are too low to represent ‘signal of interest.’” Email correspondence, November 1, 2011.
22 Camerer, Florian. "Overview of the EBU Loudness Recommendation R 128." SMPTE Motion Imaging Journal.
July-August 2011; 120:(5) 24-28.

 12

http://en.wikipedia.org/wiki/Peak_meter
http://en.wikipedia.org/wiki/Peak_programme_meter

 Programme Loudness: The integrated loudness over the duration of a programme -

Programme Loudness Level is the value (in LUFS [Loudness Unit referenced to Full
Scale]) of Programme Loudness

 Loudness Range (LRA): This describes the distribution of loudness within a programme;

 Maximum True Peak Level: The maximum value of the audio signal waveform of a

programme in the continuous time domain.

As indicated above, in contrast to the various means of measuring the peaks of an audio program,
these new values look at more dimensions related to the loudness of the entire program. How
might loudness metrics pertain to such activities as the preservation reformatting of older sound
recordings? The current practice of audio transfers in a preservation setting is to do “flat” transfers
– that is, to set a level so the highest peaks of an audio program do not clip and keeping to that
level throughout the transfer. This differs from the broadcasters' practice of “riding the levels,”
meaning they continually adjust the levels of a program as it is being broadcast in order to avoid
clipping the peaks and to bring up quieter passages.

The authors of this document believe that the capture of loudness metrics will not affect the
preservation transfers of historical recordings. That is, we expect that the practice of setting the
level safely below the highest peak--and not "riding" this level through the transfer--will continue.
However, as new tools become available, loudness metadata may be embedded in the file, thus
permitting a "smart" playback device to adjust the playback volume to suit the preferences of the
listener.

Some tools that can provide loudness metrics are coming into the marketplace and we cannot see
any reason for archives not to use them to create loudness metadata and add it to the bext Chunk.
However, the newness of loudness metrics and our community's lack of experience with them
leave us uncertain as to how archives, museums, and libraries will move these ideas into practice.
The authors of this guidelines document asked some colleagues in the cultural heritage community
if they thought these loudness elements would or could be important in a library/archives/museum
preservation setting. The replies indicated that there could be value in recording this kind of
information for reasons similar to that cited by broadcasters--to make the listening experience
easier on the user--but for now, it is probably not critical information in a preservation setting. For
this reason we have included the loudness elements as "optional" in our guideline for the bext
Chunk.

It is worth noting that archives do not only produce recordings, e.g., preservation copies of
historical materials. At least some archives in the federal sector, and many in other sectors, will
begin to acquire loudness-compliant digital audio materials in the foreseeable future. If these
born-digital acquisitions consist of Broadcast WAVE files with embedded loudness metadata, the
archives will surely wish to retain that metadata. This means that archives' data management
toolsets must be loudness-aware in order to properly read and manage such files. This is one of the
reasons that we are updating the open source tool BWF MetaEdit
(http://sourceforge.net/projects/bwfmetaedit/) to accommodate loudness metadata.

 13

Other technical metadata in WAVE files: the WAVE Format Chunk

The key document that governs WAVE-specific technical metadata is the RIFF (Resource
Interchange File Format) specification: Multimedia Programming Interface and Data
Specifications 1.0 (1991, IBM Corporation and the Microsoft Corporation). This publication
specifies the content for the WAVE Format Chunk (<fmt-ck>), which in turn specifies documents
the format of the actual waveform sound data (<wave-data>).

Field Description

FormatTag A number indicating the WAVE format category of the file. The content of

the <format-specific-fields> portion of the fmt chunk, and the interpretation of
the waveform data, depend on this value. You must register any new WAVE
format categories. See Registering Multimedia Formats in Chapter 1,
Overview of Multimedia Specifications, for information on registering
WAVE format categories. Wave Format Categories, following this section,
lists the currently defined WAVE format categories.

If the wFormatTag field of the <fmt-ck> is set to WAVE_FORMAT_PCM,
then the waveform data consists of samples represented in pulse code
modulation (PCM) format.23 For PCM waveform data, the <format-specific-
fields> includes the BitsPerSample data element (next item listed).

BitsPerSample Specifies the number of bits of data used to represent each sample of each

channel. If there are multiple channels, the sample size is the same for each
channel.

Channels The number of channels represented in the waveform data, such as 1 for mono

or 2 for stereo.

SamplesPerSec The sampling rate (in samples per second) at which each channel should be

played.

AvgBytesPerSec The average number of bytes per second at which the waveform data should

be transferred. Playback software can estimate the buffer size using this value.

BlockAlign The block alignment (in bytes) of the waveform data. Playback software needs

23 The Multimedia Programming Interface and Data Specifications 1.0 lists the following WAVE format categories
with their FormatTag, Value, and Format Category:
WAVE_FORMAT_PCM (0x0001) Microsoft Pulse Code Modulation (PCM) format
IBM_FORMAT_MULAW (0x0101) IBM mu-law format
IBM_FORMAT_ALAW (0x0102) IBM a-law format
IBM_FORMAT_ADPCM (0x0103) IBM AVC Adaptive Differential Pulse Code Modulation format
Many additional categories are lists in the documentation for the JHOVE WAVE module
(http://hul.harvard.edu/jhove/wave-hul.html).

 14

http://hul.harvard.edu/jhove/wave-hul.html

to process a multiple of BlockAlign bytes of data at a time, so the value of
BlockAlign can be used for buffer alignment.

Audio-data checksums, an ad hoc MD5 Chunk, and the EBU Quality Chunk

When the BWF MetaEdit tool was being developed in 2009, the consulting team at Audiovisual
Preservation Solutions added a checksum (hash value) function. The rationale is provided in the
help text for the tool:

A checksum is essentially a fingerprint for a given file used for data integrity monitoring.
An MD5 is one type of checksum. When an MD5 checksum is generated it produces a 32
character value which represents a unique code (or fingerprint) called a hash value, which
is specific to that file. If any changes are made to that file and a checksum is generated
again it will produce a different 32 character value. If nothing in a file changes and a
checksum is generated again, the values will be the same.

The checksum under discussion here pertains to the audio data within the file. This limit means
that an archive can update a file's descriptive metadata without disturbing the audio data proper
and thereby retain the validity of the checksum. This approach is outlined in the help text:

A traditional whole-file checksum would be altered every time BWF MetaEdit adds or
edits metadata in the file. Therefore a whole-file checksum does not help with verifying the
integrity of the audio within the file. While the metadata is expected to change, the audio
data is not. For this reason BWF MetaEdit supports the generation of an audio-data-only
checksum (including the entire <data> chunk, excluding the chunk id, size declaration, and
any optional padding byte). This will create a hash value for only the audio portion of the
file which helps validate the integrity of the audio but allows for alteration of the metadata.

The help menu of BWF MetaEdit also describes how and where it places the checksum within the
file:

BWF MetaEdit includes an Option called 'Evaluate MD5 for audio data'. When this is
enabled BWF MetaEdit will generate an MD5 checksum for the audio data of any file that
is opened and populate the MD5Evaluated column of the Technical View [a report
associated with the tool].

Another option called 'Embed MD5 for audio data' will generate an MD5 checksum for the
audio data and then store it directly within the file in an MD5 chunk within the file using
the id <MD5 >. The declared size of this chunk is always 16 bytes.

When BWF MetaEdit opens an audio file it will immediately display any checksum stored
in the <MD5 > chunk in the MD5Stored column. If open audio files already include an
<MD5 > chunk then running 'Evaluate MD5 for audio data' will re-evaluate the checksum
and display the results in the MD5Evaluated column. This will demonstrate any conflicts
between the stored checksum and the newly evaluated checksum in order to verify the
integrity of the audio data. A discrepancy between the stored and evaluated checksum
indicates that the audio data was somehow altered since the last checksum was embedded
either through editing or error. If you wish to overwrite an existing embedded checksum

 15

 16

value with a newly generated checksum value make sure that 'Embed MD5 for audio data'
is selected.”

The MD5 Chunk is an invention of the Working Group and the tool's developers. We feel that it
has value but, by definition, it is an ad hoc, non-standardized entity. We welcome comments on
how this idea might be modified or brought forward into wider practice.

In the course of the development of the MD5 chunk, we considered using the EBU Quality Chunk,
defined in Supplement 2 to the Broadcast Wave Specification (July 2001).24 The Quality Chunk
has a pair of elements that document what is called the FileSecurityCode, a code that plays a role
similar to the role played by our MD5 checksum.
 FileSecurityReport: This field contains the FileSecurityCode of QualityChunk. It is a 32 bits

value which contains the checksum [0….231].
 FileSecurityWave: This field contains the FileSecurityCode of BWF Wave data. It is a 32 bits

value which contains the checksum [0….231].
However, since the extent of the MD5 checksum is 128 bits, it will not fit in the space allotted to
the FileSecurity tags. We considered other elements within the Quality Chunk with space for more
characters, e.g., Title, but had concerns about causing interoperability and validation problems and
did not adopt that approach.

24 “BWF – A Format for Audio Data Files in Broadcasting. Supplement 2 – Capturing Report.”
http://tech.ebu.ch/docs/tech/tech3285s2.pdf (accessed October 13, 2011)

http://tech.ebu.ch/docs/tech/tech3285s2.pdf

	Embedding Metadata in Digital Audio Files
	Introductory Discussion for the Federal Agencies Guideline
	INTRODUCTION
	What is this document?
	Why embed metadata?
	Limits to the Audio-Visual Working Group’s current proposal
	Constraints imposed by WAVE and BWF file specifications, future explorations

	DISCUSSION
	Versioning and Broadcast WAVE
	Data Elements in the WAVE (RIFF) INFO List
	Data elements in the BWF bext Chunk
	The CodingHistory element
	Other technical metadata in WAVE files: the WAVE Format Chunk
	Audio-data checksums, an ad hoc MD5 Chunk, and the EBU Quality Chunk

