OpenDICE (v1.3) User Manual

Lei He

lehe@loc.gov

1-202-707-8239

Figure 1. OpenDICE user interface

- 1. In the interface (Figure 1), the default setting for the target is ColorChecker SG. User may change it to DICE.
- The default FADGI level for image quality assessment is 4 star, which may be changed to 3 or 2 star. If the analysis results fail to meet 2 star level, then it's 1 star level. A configuration file is provided to allow the user change the criteria settings (Figure 2). The current values follow the specifications in FADGI v2010.

X	⊒ 9 × 6 ×]∓	Config.xlsx	- Micr —		x
F	ile Hon Inse P	agi Forr Da	ata Revi Viev	∧ (?) □	ð X
Pas	te d	Alignment Nur	% A mber Styles	Cells ζ	- 21 - 21 - 21 - 21 - 1
Clip	board 🖫			E	diting
	D18	▼ (0	f_{x}		~
	A	В	С	D	
1	FADGI Criteria	****	***	**	
2	Hi_freq Low	0.95	0.9	0.8	
3	Hi_freq Up	0.2	0.3	0.4	
4	Mid_freq Low	0.45	0.35	0.25	
5	Mid_freq Up	0.65	0.75	0.85	
6	Sampling Freq	0.005	0.0075	0.015	
7	Nyquist Amp	0.2	0.3	0.4	
8	Sharpening	1	1.1	1.2	
9	OECF band	3	6	9	=
10	White Balance	3	4	6	
11	Uniformity	0.01	0.03	0.05	
12	Noise	2.5	4	6	
13	Max DeltaE	6	10	15	
14	Mean DeltaE	3	5	10	
15	Max DeltaEab	3	5	8	
16	Mean DeltaEab	2	3	6	
1/	Color Regis	0.33	0.5	0.8	
18				L	
19					
	► ► Sheet1	Sheet2 / S	Shee 4		
Rea	dy	₩□□1	00% (_)	-0	-+

Figure 2. FADGI criteria values

 (1). User will load the profile first according to the target selection. It should be an Excel file, with the measurements as the ground truth for color accuracy assessment (L*a*b*) and tonescale analysis (density), respectively. For example, a DICE profile and a Colorchecker SG profile are shown in Figure 3 and Figure 4.

(2). The profile format is strictly defined, with the L*, a*, b*, and D as the table head. The patches are listed from 1 to 30 (DICE), or from A1...A10 to N1...N10 (Colorchecker SG).

(3). Note that the DICE target has density measurements for its 12 gray patches (#10 - #21), and Colorchecker SG target has density measurements for its central 12 gray patches (#E5 - #J6).

(4). The profile must match with the selected target, otherwise an error message will be displayed. Then user may reselect either the profile or target.

x∎	l 🗄 ち・ぐ・ ∓		Profile_DIC	E_6.xlsx - Exc	el		? 🛧	- 🗆	×
F	FILE HOME INSERT PAG	GE LAYOUT	FORMULA	S DATA	REVIEW VI	EW Acrol	bat 👍 Fay	/ Tang 👻	
Pa	$\begin{array}{c c} & & \\ \hline \\ \hline$	1 · A Align	≡ %	6 E Co Iber	nditional For mat as Table	rmatting *	Cells Ed	M iting	
			Ť		Chulan		Ť	•	
Cil	pooard is Font	La I			Styles				
E2	E2 • : $\times \checkmark f_x$ •								
	Α	В	С	D	E	F	G	Н	
1		L*	a*	b*	D				
2	Patch 1	38.61	13.1	14.1					
3	Patch 2	64.65	17.92	18.45					
4	Patch 3	49.49	-5	-21.46					
5	Patch 4	43.2	-13.11	21.85					
6	Patch 5	55.18	8.76	-23.86					
7	Patch 6	69.73	-33.52	-0.78					
8	Patch 7	62.02	33.86	57.48					
9	Patch 8	39.73	10.86	-43.85					
10	Patch 9	52.3	47.63	17.16					
11	Patch 10	96.12	-0.73	1.83	0.04				
12	Patch 11	91.26	-77	0.13	0.09				
13	Patch 12	86.23	-0.83	0.32	0.15				
14	Patch 13	81.19	-1.06	0.28	0.22				
15	Patch 14	71.12	-1.22	0.09	0.36				
16	Patch 15	61.39	-1.56	-0.1	0.51				
17	Patch 16	49.11	-0.54	0.13	0.75				
18	Patch 17	38.04	-0.31	-0.23	0.98				
19	Patch 18	28.14	-1	-0.15	1.24				
20	Patch 19	16.69	-0.49	-0.25	1.67				
21	Patch 20	7.42	-0.26	0.16	2.04				
22	Patch 21	6.43	-0.59	-0.33	2.42				
23	Patch 22	31.26	20.52	-18.82					
24	Patch 23	70.87	-22.58	55.36					
25	Patch 24	71.02	18.26	66.47					
26	Patch 25	29.6	12.08	-46.83					
27	Patch 26	54.12	-37.63	29.66					
28	Patch 27	43.25	50	28.14					
29	Patch 28	80.75	3.61	77.95					
30	Patch 29	51.95	49.8	-12.56					_
31	Patch 30	50.25	-28.28	-28.17					-
	< → Sheet1	+			: •			•	
REA		-		E		Π		1009	v.

Figure 3. DICE target profile with the L*a*b* and density (D) measurements

x		ن ج	ð		rofile_	Colo	orChecke	rSG_	'	? 🛧	- 0	; >	<
l	FILE	НО	INSE	PAG	OR	DAT	REVI	/IE	Acro	🔔 Fay	Tang 👻	0	Þ
	ĥ	Α		\equiv	%		(⊒ Cond	ition	al Forn	natting -			
			AB				👿 Form	at as	Table	Ŧ	Calla		
Cit	- ppoard	Font	Alle	nment -	dmuvi T	er [🔜 Cell S	tvles	÷		Cells		
							-	, 2+	vlar				
								50	yies				-
G	33			\times	~	Ĵ	fx						-
	А		в	с	D)	E		F	G	н		
1		L*		a•	b*		D						
2	A1	96	.2985	-0.5458	3 1.5	5096							
3	A2	10	.6935	-0.3352	2 -1.0	0118							
4	A3	49	.6154	-0.3103	3 0.3	3653		_					
5	A4	96	.0415	-0.485		5149		-					
7	A5 46	49	6400	-0.2074	1 01	3381						1	
8	A7	95	.9526	-0.5028	1.9	5657						$+ \parallel$	
9	A8	9	.3874	-0.1372	2 -0.0	0766							
10	A9	49	.4682	-0.3192	2 0.3	3523							
11	A10	95	.9029	-0.4957	1.6	5006							
12	B1	49	.4967	-0.3075	5 0 .3	3672							
13	B2	32	.3653	51.3666	5 -9.5	5427		_					
14	83	60	6267	26.5011	-17.9	9100		-					
15	D4 85	20	7842	-14 6309	-41.3	0136						11	
17	B6	-+9	5414	-29 8247		1129							
18	B7	20	.1867	-25.3903	3 -6.5	5301		-					
19	B8	59	.6112	-39.3237	-12.9	9951							
20	B9	18	.7166	1.8405	5 13.5	5833							
21	B10	49	.3193	-0.3254	0.3	3267							
22	C1	10	.7087	-0.8095	5 -3.0	0684							
23	C2	20	.3979	19.7419	9 -18.3	3000		_					
24	C3	41	.0532	19.2361	-37.6	5173							
25	C4	19	.8193 5206	16 0700	2 -36.5	5187							
20	C5	19	5360	-17 8339	-21 0	9442							
28	C7	60	1240	-5.0684	-32.3	3263							
29	C8	50	.1326	-47.6600	0 -10.4	4349							
30	C9	59	.9544	-39.5472	2 19.7	7771							
31	C10	11	.3559	-0.3692	2 -0.8	8035							
32	D1	96	.0416	-0.5016	5 1.5	5184							
33	D2	83	.3154	-1.6797	-8.	3638							
34	D3	84	.6238	14.7581	0.0	5289							
35	D4	84	5380	13.0761) -1.1	13//						++	
37	D6	83	7328	-11 8839	263	8741						+	
38	D7	61	.5088	29.5637	36.1	7664						+	
39	D8	63	.6373	20.9805	5 18.8	8030							
40	D9	50	.5350	-53.4541	13.8	8062							
41	D10	95	.9202	-0.5152	2 1.4	4722							
42	E1	49	.5449	-0.3344	0.3	3185							
43	E2	32	.4478	19.8755	22.5	5671						-	
44	E3	61	.8556	37.5262	69.0	0939						+	
45	C4 E5	19	1938	-0 5123	+ -58.(1 /	0487 1307	0.05	;				+	
47	E6	10	.8849	-1.0436	, <u>1</u> .	5829	1.89	,)				++	
48	E7	76	.3084	20.2970	23.9	5270	1.03					+	
				-1.4	cha	1 -					1		*
			BC	окт	Shee	ť	\oplus	:	•				
RE	ADY				Ⅲ	E				•	-+	80%	

Figure 4. Colorchecker SG target profile with the L*a*b* and density (D) measurements

- 4. After loading the profile, user may import the target image for quality assessment. Similarly, the image must match with the target. Otherwise an error message will be display for re-selection. With the current version, OpenDICE support only well scanned images with tilt angle less than 5°, i.e., no automatic rotation or adjustment is applied to the input image.
- 5. Once the image is loaded, the regions of interest (ROI) on the image will be automatically identified, as shown with the rectangles. User may resize or drag the rectangles for minor location adjustment. If the ROI are far away from the ideal regions, manual selection is suggested, i.e., user check the Manual Detection option and load the image again.

Note that manual detection generally provides faster and more accurate ROI identification, with the user interaction. User must click the four corner points (for DICE targets) or cross points (for Colorchecker SG and UTT) in a clockwise manner (double click is needed for the last click on point 1 when finish the loop), see Figure 5.

Figure 5. Landmark points for user manual selection to identify the ROI

6. Once the ROI are identified, user will see the images overlapped with a set of rectangles, see Figure 6. In this identification process, user cannot click any buttons on the interface. Again, user may be drag or resize the rectangles for more accurate location. Depending on the image size, this step may take a couple of minutes to identify the ROI on Colorchecker SG images. In such cases, we recommend Manual Detection option before loading the image.

Figure 6. ROI identification for Colorchecker SG, DICE and UTT target images.

7. User confirm the ROI are acceptable, then click Run button to start assessment. The assessment results are displayed on two (Colorchecker SG target) or three (DICE target) windows. For the Colorchecker SG target, the first window displays color accuracy analysis results and the second window presents tonescale analysis results. DICE target images have the third window for resolution analysis results.

(1). Color accuracy window consists of four tabs: Luminance, Delta E 2000, Color Registration Accuracy, and Summary.

Luminance tab shows the difference between the aim (ground truth from the measurements) and the actual image values for all patches, as shown in Figure 7.

Figure 7. Luminance tab in Color Accuracy Analysis window

Delta E 2000 tab shows the Δ E2000 between the ground truth and the actual image values for all patches, as shown in Figure 8. The vertical black lines with black dots represent the actual Δ E2000 values, and the vertical red lines with red dots show the actual Δ E2000(a*b*) values. The horizontal magenta line shows the maximum upper limit for Δ E2000 according to the user FADGI level selection. Similarly, the horizontal blue line shows the mean upper limit for Δ E2000. The horizontal black line shows the actual mean Δ E2000, and the horizontal green line shows the actual median Δ E2000.

Figure 8. Delta E 2000 tab in Color Accuracy Analysis window

Color Registration Accuracy tab is not applicable to Colorchecker SG target. Figure 9 shows an example of DICE target.

Figure 9. Color Registration Accuracy tab in Color Accuracy Analysis window (only for DICE target)

Summary tab shows the detail results (value) according to the FADGI guideline performance level (lower limit and upper limit), see Figure 10.

🔹 Color Accuracy Assessment — 🗌 X									
Luminance (L*)	Delta E 2000	Delta E 2000 Color Registration Accuracy		Summary					
FADGI Performance Level:4 star									
Measurements	Pass/Fail	Lower Limit	Value	upper Limit					
Max DeltaE 2000	Pass	0.0	5.6	6.0	^				
Mean DeltaE 2000	Pass	0.0	2.5	3.0					
Median DeltaE 2000			2.4						
Max DeltaE(a*b*) 2000	Fail	0.0	5.5	3.0					
Mean DeltaE(a*b*) 2000	Pass	0.0	1.8	2.0	_				
Median DeltaE(a*b*) 2000			1.6						
A1_DeltaE 2000	Pass	0.0	2.2	6.0					
A2_DeltaE 2000	Pass	0.0	2.6	6.0					
A3_DeltaE 2000	Pass	0.0	3.6	6.0					
A4_DeltaE 2000	Pass	0.0	2.0	6.0					
A5_DeltaE 2000	Pass	0.0	2.8	6.0					
A6_DeltaE 2000	Pass	0.0	3.5	6.0					
A7_DeltaE 2000	Pass	0.0	2.0	6.0					
A8_DeltaE 2000	Pass	0.0	2.8	6.0					
A9_DeltaE 2000	Pass	0.0	3.5	6.0					
A10_DeltaE 2000	Pass	0.0	2.0	6.0					
B1_DeltaE 2000	Pass	0.0	3.4	6.0					
B2_DeltaE 2000	Pass	0.0	1.7	6.0					
B3_DeltaE 2000	Pass	0.0	3.6	6.0					
B4_DeltaE 2000	Pass	0.0	1.4	6.0					
B5_DeltaE 2000	Pass	0.0	2.9	6.0					
B6_DeltaE 2000	Pass	0.0	2.3	6.0					
B7_DettaE 2000	Pass	0.0	3.6	6.0					
B8_DeltaE 2000	Pass	0.0	1.9	6.0					
B9_DeltaE 2000	Pass	0.0	4.5	6.0					
B10_DeltaE 2000	Pass	0.0	3.3	6.0	~				

Figure 10. Summary tab in Color Accuracy Analysis window

(2). Tonescale analysis window consists of four tabs: OECF Curves, Difference to Aim, White Balance, Uniformity, Noise, and Summary.

OECF tab shows the OECF curves for RGB and luminance components, as shown in Figure 11. User may change the gamma, gain, and offset to adjust the curves in order to fit them into the range defined by the current FADGI level (magenta curves).

Figure 11. OECF Curves tab in Tonescale Analysis window

Figure 12. Difference to Aim tab shows the OECF curve errors in Tonescale Analysis window

White Balance tab shows white balance error (blue-red, green-red, and green-blue) of the neutral patches, and the ideal range defined by the current FADGI level (magenta curves), see Figure 13.

Figure 13. White Balance tab shows the white balance errors in Tonescale Analysis window

Uniformity assessment is not applicable to Colorchecker SG target. Figure 14 shows an example of DICE target.

Tonescale Analysis —									
OECF Curves	Differce to Aim	White Balance	Uniformity	Noise	Summary				
Peak Difference Aim:0.01									
Average Value Peak Difference = (Max - Min)/Mean									
Loc	ation	L	R	G	В				
Peak Difference		0.017	0.016	0.017	0.018				
Overall Mean		187.0	189.5	186.3	184.0				
			1						
Upper Left		186.8	189.3	186.1	183.7				
Opper Right		186.8	189.4	186.1	183.9				
Center Lower Loff		197.0	189.0	103.0	103.4				
Lower Bight		187.7	190.3	187.0	184.8				

Figure 14. Uniformity tab shows the illuminance uniformity error in Tonescale Analysis window (only for DICE target)

Noise tab shows the noise level for the neutral patches, see Figure 15.

Figure 15. Noise tab shows the noise levels in Tonescale Analysis window

Summary tab shows the detail results (value) according to the FADGI guideline performance level (lower limit and upper limit), see Figure 16.

🕼 Tonescale Analysis – 🗌 🗙									
OECF Curves	Differce to Aim	White Balance	Uniformity	Noise	Summary				
FADGI Performance Level:4 star									
Measur	ements	Pass/Fail	Lower Limit	Value	Upper Limit				
Tone Response									
E5 Red		Fail	239.0	237.9	245.0				
E5 Green		Pass	239.0	239.9	245.0				
E5 Blue		Fail	239.0	238.6	245.0				
J6 Red		Fail	226.7	215.3	232.7				
J6 Green		Fail	226.7	218.1	232.7				
J6 Blue		Fail	226.7	218.2	232.7				
F5 Red		Fail	199.6	189.5	205.6				
F5 Green		Fail	199.6	191.2	205.6				
F5 Blue		Fail	199.6	192.4	205.6				
I6 Red		Fail	187.2	179.0	193.2				
l6 Green		Fail	187.2	179.5	193.2				
I6 Blue		Fail	187.2	181.4	193.2				
G5 Red		Fail	159.6	149.9	165.6				
G5 Green		Fail	159.6	152.2	165.6				
G5 Blue		Fail	159.6	151.7	165.6				
H6 Red		Fail	145.0	136.9	151.0				
H6 Green		Fail	145.0	140.3	151.0				
H6 Blue		Fail	145.0	139.0	151.0				
H5 Red		Fail	119.6	112.4	125.6				
H5 Green		Fail	119.6	115.4	125.6				
H5 Blue		Fail	119.6	114.9	125.6				
G6 Red		Fail	94.4	89.2	100.4				
G6 Green		Fail	94.4	91.6	100.4				
G6 Blue		Fai	94.4	91.8	100.4				
15 Red		Fail	82.9	80.3	88.9				
is Green		Fail	82.9	81.4	88.9				
ID DILE		Fail	02.9	01.0	00.9				

Figure 16. Summary tab shows the tonescale analysis results

(3). Specifically for DICE target, there is a resolution analysis window which consists of nine tabs: Efficiency, SFR (10%), SFR (50%), Center, Upper Left, Upper Right, Lower Left, Lower Right, and Summary.

Efficiency tab shows the average sampling efficiency for red, green, and blue components, see Figure 17.

Figure 17. Efficiency tab shows the sampling efficiency values in resolution analysis window

8. With these results, user may click the Export button to write all the results to an Excel file as the results. The file will be saved in the same folder as that of the image, with an extension of the FADGI star level. Note that Microsoft Excel is required in order to write the results.